The Dip Test of Unimodality

J. A. Hartigan; P. M. Hartigan

Stable URL:
http://links.jstor.org/sici?sici=0090-5364%28198503%2913%3A1%3C70%3ATDTOU%3E2.0.CO%3B2-A

The Annals of Statistics is currently published by Institute of Mathematical Statistics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ims.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
THE DIP TEST OF UNIMODALITY

BY J. A. HARTIGAN AND P. M. HARTIGAN

Yale University and Veteran's Administration Hospital

The dip test measures multimodality in a sample by the maximum difference, over all sample points, between the empirical distribution function, and the unimodal distribution function that minimizes that maximum difference. The uniform distribution is the asymptotically least favorable unimodal distribution, and the distribution of the test statistic is determined asymptotically and empirically when sampling from the uniform.

1. Introduction. There are few statistical tests for discovering the presence of more than one mode in a distribution. One test, suggested by Wolfe (1970), uses the likelihood ratio for a two-component normal mixture against the normal null hypothesis. This test is defined in any number of dimensions. It is a formidable task to compute the statistic, and the usual maximum likelihood asymptotics do not apply (the likelihood ratio approaches infinity in probability in the null case as the number of observations increases). Worse, the test may be expected to be quite sensitive to the normality assumption, and may, for example, decide with high probability that a long-tailed unimodal distribution has more than one mode. Such a distribution may look more like a normal mixture than a normal.

A related test due to Engelman and Hartigan (1969) divides the sample into two subsets to maximize the likelihood ratio that the two subsets are sampled from normals with different means, against the null hypothesis that the means are equal. The test statistic is the maximum likelihood ratio over all divisions. The distribution is asymptotically normal (Hartigan, 1978), the statistic is easy to compute, but again the test will not work well when the bimodal alternative is not a normal mixture.

A test based on intervals between successive order statistics is suggested by J. B. Kruskal in Giacomelli, et al. (1971), but this test requires that the two modes be specified in advance. Another test based on intervals, using the idea that in a bimodal distribution, there should be a large interval accompanied by many small intervals on either side, is described in Hartigan (1977). In the many-dimensional case, a similar idea breaks the minimum spanning tree at a link such that there are large numbers of neighboring smaller links on each side of the break, and uses as test statistic the least of the two numbers of neighboring small links. Equivalently, take the maximum size of the smaller cluster among all pairs of disjoint single linkage clusters (Hartigan, 1981).

Why not compute the likelihood ratio test for unimodality versus bimodality?
using monotone regression? The maximum likelihood density is infinite at the
mode, and so it is necessary to constrain the estimate to be constant in the
neighborhood of the mode (Wegman, 1970), perhaps by setting a bound on the
density. Setting the width of the modal interval is analogous to the intractable
problem of setting kernel widths in density estimation, which usually requires
knowledge of higher derivatives of the density. See, for example, Silverman
(1978). Setting the width is crucial in testing for bimodality, because contributions
to the likelihood from observations near the mode and between the two modes
in the bimodal fit, have the main effect—observations in the tail usually make
the same contribution to the bimodal and unimodal likelihoods, and so have little
effect, as one would desire.

Silverman (1981) suggests using the smallest window width, such that the
resulting kernel density estimate is unimodal, as a test statistic for unimodality.
The significance level of the test statistic is evaluated by empirically sampling
from a rescaled version of the unimodal density estimate.

We propose the dip statistic as the maximum difference between the empirical
distribution function, and the unimodal distribution function that minimizes
that maximum difference. The statistic may be computed in order n operations,
for n observations, and it is consistent for testing any unimodal against any
multimodal distribution. We argue that the appropriate null distribution is
uniform, by showing that the dip is asymptotically larger for the uniform than
for any distribution in a wide class of unimodal distributions, those with expo-
nentially decreasing tails. (We speculate that the result holds for the class of all
unimodal distributions.) The asymptotic distribution of the dip is given in the
uniform case, empirically derived distributions are specified for some finite
sample sizes, and a few power computations are performed.

A modal interval is produced as an outcome of the dip calculation; it is not
known how this competes with the various estimates of a mode considered by
Chernoff (1964), Venter (1967), Wegman (1970), Sager (1979), Eddy (1980) and
others. It does have the benefit of not requiring a kernel width.

2. The dip. A distribution function F is unimodal with mode m if F is
convex in $(-\infty, m]$ and concave in $[m, \infty)$. The mode m is not necessarily unique.
A unimodal F may have an atom only at a unique node m, and has a density,
except possibly at a unique mode m, that increases in $(-\infty, m)$ and decreases in
(m, ∞).

Define $\rho(F, G) = \sup x | F(x) - G(x) |$ for any bounded functions F, G. Define
$\rho(F, \mathcal{A}) = \inf_{G \in \mathcal{A}} \rho(F, G)$ for any class \mathcal{A} of bounded functions. Let \mathcal{A} be the
class of unimodal distribution functions.

The dip of a distribution function F is defined by $D(F) = \rho(F, \mathcal{A})$. Note that
$D(F_1) \leq D(F_2) + \rho(F_1, F_2)$ and $D(F) = 0$ for $F \in \mathcal{A}$, $D(F) > 0$ for $F \notin \mathcal{A}$; thus
the dip measures departure from unimodality.

The greatest convex minorant (g.c.m.) of F in $(-\infty, a]$ is $\sup G(x)$ for $x \leq a$,
where the sup is taken over all functions G that are convex in $(-\infty, a]$ and
nowhere greater than F.
The least concave majorant (l.c.m.) of F in $[a, \infty)$ is $\inf L(x)$ for $x \geq a$, where the inf is taken over all functions L that are concave in $[a, \infty]$ and nowhere less than F.

It is necessary to extend the definition of the dip to bounded functions F that are constant on $[-\infty, 0]$ and on $[1, \infty]$. Define \mathcal{V} to be the class of functions that are constant on $[-\infty, 0]$ and on $[1, \infty]$ and for some m, $0 \leq m \leq 1$, are convex on $[0, m]$ and concave on $[m, 1]$. Define $D(F) = \rho(F, \mathcal{V})$. We need to show that this definition is consistent with the previous one. Both definitions apply to distribution functions on $[0, 1]$.

Theorem 1. Let F be a distribution function with $F(0) = 0, F(1) = 1$. Then $\rho(F, \mathcal{V}) = \rho(F, \mathcal{V}')$.

Proof. For $G \in \mathcal{V}$, define

$$H(x) = G(0)|x < 0| + G(x)|0 \leq x \leq 1| + G(1)|x > 1|.$$

(Here the set $\{x < 0\}$ is used as a $0-1$ function equal to 1 if $x < 0$ and to 0 if $x \geq 0$.)

Then $H \in \mathcal{V}$ and $\sup_{x} |F(x) - H(x)| = \sup_{0 \leq x \leq 1} |F(x) - G(x)| \leq \rho(F, G)$.

Thus $\rho(F, \mathcal{V}) \leq \rho(F, \mathcal{V}')$.

Conversely, suppose that $G \in \mathcal{V}$. If $G(0) \geq G(1)$, set

$$H(x) = (G(0) \land 1)|0 \leq x < 1| + \{x \geq 1\}.$$

Then $H \in \mathcal{V}$,

$$\rho(F, H) \leq \max[|G(0) - F(0)|, |G(0) - F(1)|]$$

$$\leq \max[|G(0) - F(0)|, |G(1) - F(1)|]$$ since $G(0) \geq G(1)$

$$\leq \rho(F, G).$$

For $G(0) < G(1)$, define

$$H = G(0)|G < G(0)| + G|G(0) \leq G(x) \leq G(1)| + G(1)|G > G(1)|.$$

Then $H \in \mathcal{V}$; H is nondecreasing, and

$$\rho(F, H) = \sup_{G(0) \leq G(x) \leq G(1)} |F(x) - G(x)| \leq \rho(F, G).$$

Also $(H \lor 0) \land 1 \in \mathcal{V}$, is nondecreasing, and $\rho(F, (H \lor 0) \land 1) \leq \rho(F, H)$.

Thus for $G \in \mathcal{V}$, we can find H with $0 \leq H \leq 1$, H nondecreasing, $H \in \mathcal{V}$, $\rho(F, H) \leq \rho(F, G)$. Suppose H is convex on $[0, m]$ and concave on $[m, 1]$. For $a \geq 1$, define G_{a} to be the g.c.m. of $\{x \geq -a\}|H$ on $(-\infty, m]$, and the l.c.m. of $\{x \leq a\} \lor H$ on $[m, \infty)$. Then $G_{a} \in \mathcal{V}$.

The function G_{a} is constant on $(-\infty, -a]$, consists of a linear segment on $[-a, x_{1}]$ for some $x_{1}, 0 \leq x_{1} \leq m$, and will be identical to H on $[x_{1}, m]$. As $a \to \infty$, the slope of the linear segment approaches zero, and since H is nondecreasing, $\sup_{0 \leq x \leq m} |H(x) - G_{a}(x)| \to 0$.

Similarly $\sup_{m \leq x \leq 1} |H(x) - G_{a}(x)| \to 0$ as $a \to \infty$,

$$\rho(F, G_{a}) = \sup_{0 \leq x \leq 1} |G_{a}(x) - F(x)| \to \sup_{0 \leq x \leq 1} |H(x) - F(x)| = \rho(F, H).$$
Thus for each $\varepsilon > 0$, each $G \in \mathcal{G}$, there exists $G_\varepsilon \in \mathcal{G}$ with $\rho(F, G_\varepsilon) \leq \rho(F, G) + \varepsilon$. It follows that $\rho(F, \mathcal{G}) \leq \rho(F, \mathcal{G})$. \[\square \]

Theorem 2. Let F be a bounded function constant on $[-\infty, 0]$ and on $[1, \infty]$. Let I be the distribution function of the uniform on $(0, 1)$. Then $D(\alpha F + \beta I) = \alpha D(F)$ for $\alpha, \beta \geq 0$.

Thus if a distribution function F is mixed with a uniform, the dip of the resulting distribution is the dip of F multiplied by the mixing proportion of F.

Proof:

\[
D(\alpha F + \beta I) = \inf_{G \in \mathcal{G}} \rho(\alpha F + \beta I, G) = \inf_{G \in \mathcal{G}} \rho(\alpha F + \beta I, \alpha G + \beta I),
\]

noting that $G \in \mathcal{G}$ if and only if $\alpha G + \beta I \in \mathcal{G}$ when $\alpha > 0$.

Thus $D(\alpha F + \beta I) = \inf_{G \in \mathcal{G}} \alpha \rho(F, G) = \alpha D(F)$.

3. **Asymptotic behavior of the dip.** If X_1, X_2, \ldots, X_n is a sample from F, define the empirical distribution function F_n by

\[
F_n(x) = \frac{1}{n} \sum_i [X_i \leq x].
\]

The Glivenko-Cantelli theorem states that $\rho(F_n, F) \rightarrow 0$ a.s., and so $D(F_n) \rightarrow D(F)$ a.s. A test based on the dip will thus asymptotically distinguish any unimodal F from any multimodal F.

In developing a test, it is necessary to choose a unimodal distribution as the null distribution, and we have chosen to use the uniform. This choice would be justified if $D(F_n)$ were stochastically larger for the uniform than for any other unimodal distribution—that is, if

\[
P\{D(F_n) \geq x\} = \sup_{G \in \mathcal{G}} P_F[D(F_n) \geq x].
\]

Unfortunately this is not true for all x and n. For example, when $n = 4$, the dip is an increasing function of the statistic

\[
T = 1 \vee \frac{(X_3 - X_2)}{\sup(X_2 - X_1, X_4 - X_3)}
\]

where X_1, X_2, X_3, X_4 are the order statistics.

Let $F = \alpha I + (1 - \alpha)\delta_1$ where $\delta_1(x) = [x \geq 1]$.

Let E_1, E_2, E_3 denote independent exponentials; then T is distributed as $[E_1/(E_2 + \frac{1}{2}E_3)] \vee 1$ in sampling from the uniform.

In sampling from F, T is distributed

- as $[E_1/(E_2 + \frac{1}{2}E_3)] \vee 1$ given that $X_3 < 1$;
- as $[E_1/E_2] \vee 1$ given that $X_3 = 1, X_2 < 1$;
- as 1 given that $X_2 = 1$.

The three conditioning events occur with respective probabilities $\alpha^4 + 4\alpha^3(1 - \alpha), 6\alpha^2(1 - \alpha)^2, 4\alpha(1 - \alpha)^3 \div (1 - \alpha)^4$.
Now \([E_1/E_2] V 1\) is stochastically larger than \([E_1/(E_2 + 1/2E_3)] V 1\).

And it will always be possible to choose \(\alpha\) close to 1 so that the conditioning event \(X(2) = 1\) has arbitrarily small probability compared to the event \(X(3) = 1\), \(X(2) < 1\). (The event \(X(3) < 1\) is of no importance since the conditional distribution of \(T\) is the same as for the uniform.)

Thus for each \(x\), \(\alpha\) may be chosen so that \(P_{F}[T \geq x] > P_{I}[T \geq x]\); the uniform does not give the stochastically largest distribution of the dip.

However, we conjecture that, asymptotically, the distribution of the dip is stochastically largest for the uniform; we have been able to prove that \(\sqrt{n}D(F_n)\) is asymptotically positive for the uniform and asymptotically zero for distributions whose densities decrease exponentially away from the mode.

Theorem 3. Let \(F_n\) be the empirical distribution function for a sample from the uniform on \((0, 1)\), and let \(B\) be the Brownian bridge process with \(\text{cov}[B(s), B(t)] = s(1 - t), 0 \leq s \leq t \leq 1\). Assume that \(B\) is zero outside \((0, 1)\).

Then \(\sqrt{n}D(F_n) \rightarrow D(B)\) in distribution as \(n \rightarrow \infty\).

Proof. From the Skorohod embedding of Donsker's theorem (Breiman, 1968, page 296), it is possible to construct a probability space in which \(F_n\) has the same distribution as \(F_n\) for each \(n\), and in which \(B\) is a Brownian bridge, and

\[
\sup_{0 \leq s \leq 1} \left| \sqrt{n} (F_n(x) - x) - B(x) \right| \rightarrow 0 \quad \text{in probability.}
\]

Since \(D(F_1) - D(F_2) \leq \rho(F_1, F_2)\),

\[
|D(\sqrt{n}F_n) - D(\sqrt{n}I + B)| \leq \sup_{x} |\sqrt{n}(F_n(x) - x) - B(x)| \rightarrow 0,
\]

\[
|D(\sqrt{n}F_n) - D(B)| \rightarrow 0 \quad \text{in probability, from Theorem 2.}
\]

Thus \(\sqrt{n}D(F_n) \rightarrow D(B)\) in distribution.

Theorem 4. Let \(F_n\) be the empirical distribution for a sample of size \(n\) from \(I\).

Then

\[
\sup_{0 \leq s \leq 1} \left| \sqrt{n} \left[F_n(y) - F_n(x) - (y - x) \right]/(\sqrt{y - x + 1/\sqrt{n}}(\log n)^2) \right| \rightarrow 0
\]

in probability as \(n \rightarrow \infty\).

Proof. This result differs from Theorem 1.3 of Shorack and Wellner (1982) only in the standardization factor \(\sqrt{y - x + 1/\sqrt{n}}\) where the \((1/\sqrt{n})\) is introduced to obtain a result uniform over all intervals (they exclude very small intervals), and in the \((\log n)^2\) which is a little larger than their factor.

From Bennett (1962), if \(Z\) is binomial with mean \(np\) and variance \(np(1 - p)\),

\[P(|Z - np| > t) \leq 2 \exp(-t^2/[2np(1 - p) + \frac{3}{2}t])\]

Set \(Z = n(F_n(y) - F_n(x)), p = y - x, t = \delta \sqrt{n}((\sqrt{y - x + 1/\sqrt{n}})(\log n)^2)\).

Let \(Z_{x,y}^2 = \sqrt{n} \left[F_n(y) - F_n(x) - (y - x) \right]/((\sqrt{y - x + 1/\sqrt{n}})(\log n)^2)\).

Then \(P[|Z_{x,y}^2| > \delta] = P[|Z - np| > t] \leq 2 \exp(-\frac{3}{4}\delta^2(\log n)^2)\) for \(\delta \leq 3, 3 \leq n \geq 3, n \geq 3\), considering the two cases \(t \leq 3np\) and \(t > 3np\) separately.

Now consider \(A_n\), the set of intervals in which the endpoints are of form \(kn^{-3}\), \(0 \leq k \leq n^3, k\) an integer. There are \(\frac{1}{2}n^6\) such intervals.
DIP TEST OF UNIMODALITY

As \(x \) changes over the interval \([kn^{-3}, (k + 1)n^{-3}]\), \(F_n(x) - x \) changes by at most \((1/n)\) if the interval contains at most one point. Let \(B_n \) be the event that all intervals of the form \([kn^{-3}, (k + 1)n^{-3}]\) contain at most one point. Then when \(B_n \) holds, \(Z_{x,y}^n \) changes by at most

\[
\sqrt{n} \left(\frac{2}{n} \right) / \left[\frac{1}{(1/\sqrt{n})(\log n)^2} \right] = 2/(\log n)^2
\]
as \(x \) and \(y \) change over intervals of form \([kn^{-3}, (k + 1)n^{-3}]\).

Note that

\[
P[\sup_{x,y \in A_n} |Z_{x,y}^n| > \delta] \leq n^6 \sup_{x,y \in A_n} P[|Z_{x,y}^n| > \delta] \leq 2n^6 \exp[-1/4 \delta^2 (\log n)^2] \to 0 \quad \text{as} \quad n \to \infty.
\]

\[
P[B_n^c] \leq n^3 P[\{kn^{-3}, (k + 1)n^{-3}\} \text{ contains more than one point}] \leq n^3 P[\{kn^{-3}, (k + 1)n^{-3}\} \text{ contains the first two observations}] \leq 1/n \to 0 \quad \text{as} \quad n \to \infty,
\]

\[
\{\sup_{0 \leq x \leq y \leq 1} |Z_{x,y}^n| > \delta\} \leq \{\sup_{x,y \in A_n} |Z_{x,y}^n| > \delta - 2/(\log n)^2\} + B_n^c \to 0 \quad \text{in probability as required.}
\]

THEOREM 5. Let \(F \) be unimodal with nonzero \(k \)th derivative at the mode \(m \), for some \(k \geq 2 \), and let \(F \) have exponentially decreasing density, that is,

\[
\inf_{0 < F'(x) < F'(m) - \epsilon} \left|(d/dx)\log F'(x)\right| > 0 \quad \text{for each} \quad \epsilon > 0.
\]

Then \(\sqrt{n}D(F_n) \to 0 \) in probability.

PROOF. Let \(G_n \) be the unimodal distribution equal to the g.c.m. of \(F_n \) on \((-\infty, m] \) and the l.c.m. of \(F_n \) on \([m, \infty) \). We show that \(G_n \) is linear in segments of length \(o_p(1) \), such that \(G_n = F_n \) at the endpoints of the segments. It then follows from Theorem 4 that, in probability, \(\sqrt{n} \rho(G_n, F_n) \to 0 \), so \(\sqrt{n}D(F_n) \to 0 \).

A similar result is proved by Kiefer and Wolfowitz (1976) for concave distribution functions, but their conditions do not allow infinite tails or \(F''(m) = 0 \). The condition on the tails is undoubtedly too strong, but at least the normal distribution is covered; it is sufficient to have, for some \(k \geq 2 \), (C)

\[
\sup_{m \in (x_1, x_2), -\infty \leq x_1 \leq x_2 \leq m} [F(x_2) - F(x_1)]^k / |F(x_2) + F(x_1) - 2F(\bar{x})| < \infty
\]

where \(\bar{x} = \frac{1}{2}(x_1 + x_2) \).

Let \(m = 0 \) without loss of generality. We will first show that condition (C) is implied by the conditions given in the theorem.

(i) For \(x_1 < x_2 < -\epsilon \), \(F'(x) > 0 \),

\[
(d/dx)\log F'(x) > B > 0.
\]

\[
F'(x_2)/F'(x_1) \geq \exp[B(x_2 - x_1)]
\]

\[
F(x_2) - F(x_1) \geq [F(\bar{x}) - F(x_1)] \exp(B\delta) \quad \text{where} \quad \delta = (x_2 - x_1)/2.
\]
For $B\delta \geq 1$,
\[
[F(x_2) - F(x_1)]^k/[F(x_2) + F(x_1) - 2F(\bar{x})] \\
\leq [F(x_2) - F(\bar{x})]^{k2}\{[F(x_2) - F(\bar{x})][1 - e^{-1}] \leq 2^k/(1 - e^{-1}).
\]

For $B\delta < 1$,
\[
[F(x_2) - F(x_1)]^k/[F(x_2) + F(x_1) - 2F(\bar{x})] \\
\leq [F(x_2) - F(\bar{x})]^{k2}\{[F(x_2) - F(\bar{x})]B\delta \\
\leq 2^k\delta^{k-2}[F'(0)]^{k-1}/B \leq 2^k[F'(0)]^{k-1}/B^{k-1}.
\]

Similar bounds will apply for $0 < \epsilon < x_1 < x_2$; note that B will depend on ϵ.

(ii) For $-\epsilon < x_1 < x_2 < 0$,
\[
F(x_2) + F(x_1) - 2F(\bar{x}) = \frac{1}{2}(x_2 - x_1)^2[F''(y_1) + F''(y_2)]
\]

where $x_1 \leq y_1 \leq \bar{x} \leq y_2 \leq x_2$.

If $F^{(k)}(0)$ is the first nonzero derivative at the mode (except for $F'(0)$),
\[
F''(y_1) = y^{k-2}H(y_1)/(k - 2)! \text{ where } H(y) \to F^{(k)}(0) \text{ as } y \to 0.
\]

Thus $[F(x_2) + F(x_1) - 2F(\bar{x})] \geq \frac{1}{2}(x_2 - x_1)^2 |\bar{x}|^{k-2}A(x_1, x_2)/(k - 2)!$ where
\[
A(x_1, x_2) \to -F^{(k)}(0) \text{ as } x_1 \to 0.
\]

\[
[F(x_2) - F(x_1)]^k/[F(x_2) + F(x_1) - 2F(\bar{x})] \leq 8F'(0)^{k2}\delta^{-2}/A(x_1, x_2) \\
\leq 2^{k+2}F'(0)^{k}/|F^{(k)}(0)|
\]

for ϵ sufficiently close to zero.

(iii) It is necessary to consider also the case when x_1 is far from zero and x_2 is close to zero. Suppose $x_1 \leq -\epsilon \leq -\eta \leq x_2 \leq 0$, where $F(0) - F(-\eta) \leq F(-\eta) - F(-\epsilon)$. Then
\[
[F(x_2) - F(x_1)]^k/[F(x_2) + F(x_1) - 2F(\bar{x})] \\
\leq 2^k[F(-\eta) - F(x_1)]^k/[F(-\eta) + F(x_1) - 2F(x_1 - \eta/2)] \\
\leq 2^kC_\eta \text{ say,}
\]

using the established bound for $x_1 \leq x_2 \leq -\eta$.

Choose ϵ to establish (ii), then η to establish (iii); (i) holds for that η. The cases where x_1, x_2 are positive are handled similarly. This establishes condition C, which we will now use to prove the theorem.

Let G_n be the greatest convex minorant of F_n in $[-\infty, 0]$, and the least concave majorant of F_n in $[0, \infty]$. Then G_n is a unimodal distribution; we will show that $\sqrt{n}\rho(F_n, G_n) \to 0$ in probability, which implies that $\sqrt{n}D(F_n) \to 0$ in probability.

Let $x - \delta, x + \delta$ denote a maximal interval in $[-\infty, 0]$ where G_n is linear. Then $F_n(x - \delta) = G_n(x - \delta), F_n(x + \delta) = G_n(x + \delta)$. Since G_n is the greatest convex
DIP TEST OF UNIMODALITY

minorant,

\[F_n(y) \geq G_n(y) \quad \text{for} \quad x - \delta \leq y \leq x + \delta. \]

Thus \(F_n(x) - F_n(x - \delta) \geq F_n(x + \delta) - F_n(x) \).

Let \(H(x, \delta, n) = ([F(x + \delta) - F(x - \delta)]^{1/2} / n^{1/2} + 1/n)(\log n)^2 \).

From Theorem 4,

\[F_n(x) - F_n(x - \delta) = F(x) - F(x - \delta) + \Delta(H(x, \delta, n)). \]

(The notation \(A(x, \delta, n) = \Delta(B(x, \delta, n)) \) means \(\sup_x |A(x, \delta, n) / B(x, \delta, n)| \to 0 \) in probability as \(n \to \infty \).

Thus

\[F(x) - F(x - \delta) \geq F(x + \delta) - F(x) + \Delta(H(x, \delta, n)) \]

\[0 \leq F(x - \delta) + F(x - \delta) - 2F(x) \leq \Delta(H(x, \delta, n)). \]

For some \(k \geq 2 \),

\[[F(x + \delta) - F(x - \delta)]^k = \Delta[H(x, \delta, n)] \quad \text{from condition (C).} \]

\[[F(x + \delta) - F(x - \delta)]^{2k-1} = \Delta[(\log n)^4 / n] \]

\[H(x, \delta, n) = \Delta(n^{-1/2}). \]

Now consider \(\sup_{x-6 \leq y \leq x+6} |F_n(y) - G_n(y)| \).

\[F_n(y) - G_n(y) \]

\[= F_n(y) - F_n(x - \delta) - (y - x + \delta)[F_n(x + \delta) - F_n(x - \delta)] / 2\delta \]

\[= F(y) - F(x - \delta) - (y - x + \delta)[F(x + \delta) - F(x - \delta)] / 2\delta \]

\[+ \Delta(H(x, \delta, n)). \]

Since \(F \) is concave in \([-\infty, 0]\), the first expression is negative, and

\[F_n(y) - G_n(y) = \Delta(H(x, \delta, n)) = \Delta[n^{-1/2}]. \]

This holds uniformly over all \(x, \delta \) and \(y \), so

\[\sup_{x \leq 0} |G_n(x) - F_n(x)| = \Delta(n^{-1/2}) \]

Similarly \(\sup_{x \geq 0} |G_n(x) - F_n(x)| = \Delta(n^{-1/2}) \), so \(\sqrt{n} \Delta(G_n, F_n) \to 0 \) as required.

4. Computing the dip.

Theorem 6. Let \(F \) be an arbitrary distribution function. Then \(D(F) = d \) only if there exists a nondecreasing function \(G \) such that, for some \(x_L \leq x_U \),

(i) \(G \) is the greatest convex minorant of \(F + d \) in \((-\infty, x_L)\)

(ii) \(G \) has constant maximum slope in \((x_L, x_U)\)

(iii) \(G \) is the least concave majorant of \(F - d \) in \([x_U, \infty)\)

(iv) \(d = \sup_{x \in (x_L, x_U)} |F(x) - G(x)| \geq \sup_{x \in (x_L, x_U)} |F(x) - G(x)| \).
PROOF. We need some preliminary facts.

(A) The maximum value of $D(F)$ is $\frac{1}{4}$, achieved when F has two atoms of size $\frac{1}{2}$. To see that $D(F) \leq \frac{1}{4}$, consider a unimodal G that is long-tailed and symmetric about the median of F with an atom of size $\frac{1}{2}$ at the median.

(B) If a unimodal G has mode m, for $A > 0$, $F(A) - F(-A) > 2\rho(F, G)$, then

$$|m| \leq 2A/[F(A) - F(-A) - 2\rho(F, G)].$$

(The worst case occurs when G is linear between a negative m and A, $G(m) = 0$, $G(-A) = F(-A) + \rho(F, G)$, $G(A) = F(A) - \rho(F, G)$.)

(C) Let \mathcal{G} be the class of functions G that are nondecreasing, convex in $(-\infty, m]$ and concave in $[m, \infty)$ for some mode m. Then there exists G in \mathcal{G} such that $\rho(F, G) = D(F)$. (It is true that there exists G in \mathcal{G} such that $\rho(F, G) = D(F)$ but we do not need the slight extra generality.)

Consider a sequence G_i of unimodal distribution functions with $\rho(F, G_i) \rightarrow D(F)$. Take $\rho(F, G_i) \leq \frac{1}{2}$ so $|m_i| \leq 2A/[F(A) - F(-A) - \frac{1}{4})$. The m_i thus have a limit point m, say, and by a standard diagonalization argument we can specify a function $G(r)$ on the rationals and m such that G is nondecreasing, convex on $(-\infty, m)$ and concave on (m, ∞), and $G_n(r) \rightarrow G(r)$ on some subsequence of G_i.

The function $G(x) = \sup_{r \leq x} G(r)$ has these properties on the real line. (Note that G is continuous on the rationals except possibly at m.)

Thus $\rho(F, G) = \lim \rho(F, G_n) = D(F)$ as required.

(D) Note that $F(x) - D(F) \leq G(x) \leq F(x) + D(F)$ all x. Let G_0 be the greatest convex minorant of $G(m) \wedge [F + D(F)]$ in $(-\infty, m]$ and the least concave majorant of $G(m) \vee [F - D(F)]$ in $[m, \infty)$. Then $G_0 \in \mathcal{G}$, $\rho(F, G_0) = D(F)$, since G_0 is bounded by $F - D(F)$, $F + D(F)$ by its definition.

Let $x_L = \sup \{x | G_0(x) = D(F) + F(x)\}$, $x_U = \inf \{x | G_0(x) = F(x) - D(F)\}$. G_0 will be linear in the interval $[x_L, m]$ and in the interval $[m, x_U]$.

We may assume that $m = x_L$ or $m = x_U$ because we can repeat the construction with mode at x_L if G_0 has higher slope in $[x_L, m]$ and with mode at x_U otherwise. (If $x_L = m = x_U$ then F is unimodal and the conditions (i)–(iv) are trivially satisfied. Otherwise G_0 is continuous.)

However the interval (x_L, x_U) is not necessarily of maximum slope. Suppose that $m = x_L$; it is then possible that G_0 has maximum slope at points less than x_L. In this case consider the minimum m such that G_0 has mode m, $G_0(m) = D(F) + F(m)$, G_0 is the greatest convex minorant of $F + D(F)$ in $(-\infty, m]$, G_0 is the least concave majorant of $F - D(F)$ in $[m, \infty)$. (A compactness argument similar to the one showing $\rho(G, F) = D(F)$ establishes the existence of G_0.)

Let m_1 be the greatest $x < m$ such that $G_0(x) = F(x) + D(F)$. If $m_1 < m$ then G_0 is linear in $[m_1, m]$. If G_0 has greater slope in $[m_1, m]$ than in $[m, x_U]$, then G_0 is concave in $[m_1, \infty)$ and so the requirement that m is minimal is contradicted; thus if $m_1 < m$, conditions (i)–(iv) of the theorem are satisfied.

If $m_1 = m$, but G_0 has greater slope less than m than in $[m, x_U]$, take x_0 close enough to m so that the line segment $[x_0, G_0(x_0)]$ to $[x_U, G_0(x_U)]$ lies between
DIP TEST OF UNIMODALITY

For a purely discrete distribution function such as the empirical distribution function, the theorem suggests the following algorithm:

Let \(x_1, x_2, \ldots, x_n \) be the atoms of \(F \).

The only possible endpoints of the modal interval \((x_L, x_U)\) are the atoms. Consider the \(n(n-1)/2 \) possible modal intervals, and compute for each \([x_i, x_j]\) the greatest convex minorant of \(F \) in \([-\infty, x_j]\) and the least concave majorant of \(F \) in \([x_i, \infty]\). Let \(d_{ij} \) be the maximum distance of \(F \) to these computed curves. Then \(2D(F) \) is the minimum value of \(d_{ij} \) over all modal intervals \((x_i, x_j)\) such that the line segment \([x_i, F(x_i) + \frac{1}{2}d_{ij}]\) to \([x_i, F(x_i) - \frac{1}{2}d_{ij}]\) lies in \(\{(x, y) | F(x) - \frac{1}{2}d_{ij} \leq y \leq F(x) + \frac{1}{2}d_{ij}\} \).

The minorant and majorant computations may be made once and for all in order \(n \). At first sight, it looks as if \(n(n-1)/2 \) modal intervals must be examined, but many possibilities may be excluded—for \(x_i \) the lower endpoint, only those \(x_j \) where the least concave majorant of \(F \) in \([x_i, \infty)\) touches \(F \) need be considered.

An order \(n \) algorithm exists. Consider a taut string stretched between \([x_1, d]\) and \([x_n, F(x_n) - d]\) where \(x_1 \leq x_i \leq x_n \) for \(1 \leq i \leq n \). Assume that the curves \([x, F(x) + d] \) and \([x, F(x) - d] \) are solid. As \(d \) decreases, the string bends to form a convex minorant from \(x_1 \) to \(x_L \) and a concave majorant from \(x_U \) to \(x_n \) where \(x_L \) increases with \(d \) decreasing, and \(x_U \) decreases with \(d \) decreasing. Then \(D(F) \) is the value of \(d \) such that any further decrease forces the string out of its unimodal shape. It is necessary to consider at most \(n \) changes in \(d \), and order 1 calculations for each change, so the computation is order \(n \).

The following algorithm implements the stretched string notion:

(i) Begin with \(x_L = x_1, x_U = x_n, D = 0 \).

(ii) Compute the g.c.m. \(G \) and l.c.m. \(L \) for \(F \) in \([x_L, x_U]\); suppose the points of contact with \(F \) are respectively \(g_1, g_2, \ldots, g_k \) and \(l_1, l_2, \ldots, l_m \).

(iii) Suppose \(d = \sup |G(g_i) - L(g_i)| > \sup |G(l_i) - L(l_i)| \) and that the sup occurs at \(l_j \leq g_i \leq l_{j+1} \). Define \(x^0_L = g_i, x^0_U = l_{j+1} \).

(iv) Suppose \(d = \sup |G(l_i) - L(l_i)| \geq \sup |G(g_i) - L(g_i)| \) and that the sup occurs at \(g_i \leq l_j \leq g_{i+1} \). Define \(x^0_L = g_i, x^0_U = l_j \).

(v) If \(d \leq D \), stop and set \(D(F) = D \).

(vi) If \(d > D \), set

\[
D = \sup \{D, \sup_{x_L < x \leq x_L^0} |G(x) - F(x)|, \sup_{x_L^0 < x \leq x_U} |L(x) - F(x)|\}.
\]

(vii) Set \(x_U = x_U^0, x_L = x_L^0 \) and return to (ii).
5. Percentage points and power of the dip. In Table 1 appear the percentage points

\begin{align*}
0.01 & \quad 0.05 \quad 0.10 \quad 0.50 \quad 0.90 \quad 0.95 \quad 0.99 \quad 0.995 \quad 0.999 \\
\end{align*}

of the DIP, for sample sizes \(n = 4-10, 15, 20, 30, 50, 100, 200 \), based on 9999 repetitions from the uniform. From Theorem 3, \(\sqrt{n} D(F_n) \) converges in distribution to the dip computed for a Brownian bridge, and the table shows that \(\sqrt{n} D(F_n) \) has very nearly the same percentage points for \(n = 100 \) as \(n = 200 \). It is suggested that interpolation be based on \(\sqrt{n} \text{DIP} \).

We have not completed very extensive power computations. The following special case is illuminating however. Let \(F_0 \) be uniform on \((0, 1)\) and let \(F_1 \) be a mixture, in the proportions 3:2:3, of a uniform on \((0, \frac{1}{4})\), a uniform on \((\frac{1}{4}, \frac{3}{4})\), and a uniform on \((\frac{3}{4}, 1)\). Thus \(F_1 \) has a density \(f_1 \)

\[f_1(x) = \frac{3}{2} \begin{cases}
0 & \text{if } 0 \leq x \leq \frac{1}{4}, \\
\frac{1}{2} & \text{if } \frac{1}{4} < x < \frac{3}{4}, \\
\frac{3}{4} & \text{if } \frac{3}{4} \leq x \leq 1.
\end{cases} \]

Consider the three tests for bimodality:

(i) the dip
(ii) the depth:

\[
\sup \{ \inf \{ F_n(x_5, x_6), F_n(x_1, x_2) - F_n(x_3, x_4) \} \}
\]

over all points \(x_1 \leq x_2 \leq x_3 \leq x_4 \leq x_5 \leq x_6 \) such that \(x_4 - x_3 \geq x_2 - x_1, x_6 - x_5 \); where \(F_n(x, y) = F_n(y) - F_n(x) \). The depth is similar in aim to

\begin{table}[h]
\centering
\caption{Percentage points of the dip in uniform samples}
\begin{tabular}{lcccccccc}
\hline
sample & \multicolumn{8}{c}{probability of dip less than tabled value is} \\
size & .01 & .05 & .10 & .50 & .90 & .95 & .99 & .995 & .999 \\
\hline
4 & .1250 & .1250 & .1250 & .1250 & .1863 & .2056 & .2325 & .2387 & .2458 \\
6 & .0833 & .0833 & .0833 & .1224 & .1586 & .1645 & .1904 & .2034 & .2224 \\
7 & .0714 & .0714 & .0822 & .1181 & .1445 & .1597 & .1832 & .1900 & .2035 \\
8 & .0625 & .0745 & .0828 & .1109 & .1428 & .1552 & .1744 & .1801 & .1978 \\
9 & .0618 & .0735 & .0807 & .1041 & .1362 & .1458 & .1623 & .1693 & .1851 \\
10 & .0610 & .0718 & .0780 & .0979 & .1302 & .1394 & .1623 & .1699 & .1828 \\
15 & .0544 & .0606 & .0641 & .0836 & .1097 & .1179 & .1365 & .1424 & .1538 \\
20 & .0474 & .0529 & .0569 & .0735 & .0970 & .1047 & .1209 & .1262 & .1382 \\
30 & .0395 & .0442 & .0473 & .0617 & .0815 & .0884 & .1012 & .1061 & .1177 \\
50 & .0312 & .0352 & .0378 & .0489 & .0645 & .0702 & .0804 & .0842 & .0926 \\
100 & .0228 & .0256 & .0274 & .0355 & .0471 & .0510 & .0586 & .0619 & .0687 \\
200 & .0165 & .0185 & .0197 & .0255 & .0341 & .0370 & .0429 & .0449 & .0496 \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Percentage points of the dip in uniform samples}
\begin{tabular}{lcccccccc}
\hline
sample & \multicolumn{8}{c}{probability of dip less than tabled value is} \\
size & .01 & .05 & .10 & .50 & .90 & .95 & .99 & .995 & .999 \\
\hline
4 & .1250 & .1250 & .1250 & .1250 & .1863 & .2056 & .2325 & .2387 & .2458 \\
6 & .0833 & .0833 & .0833 & .1224 & .1586 & .1645 & .1904 & .2034 & .2224 \\
7 & .0714 & .0714 & .0822 & .1181 & .1445 & .1597 & .1832 & .1900 & .2035 \\
8 & .0625 & .0745 & .0828 & .1109 & .1428 & .1552 & .1744 & .1801 & .1978 \\
9 & .0618 & .0735 & .0807 & .1041 & .1362 & .1458 & .1623 & .1693 & .1851 \\
10 & .0610 & .0718 & .0780 & .0979 & .1302 & .1394 & .1623 & .1699 & .1828 \\
15 & .0544 & .0606 & .0641 & .0836 & .1097 & .1179 & .1365 & .1424 & .1538 \\
20 & .0474 & .0529 & .0569 & .0735 & .0970 & .1047 & .1209 & .1262 & .1382 \\
30 & .0395 & .0442 & .0473 & .0617 & .0815 & .0884 & .1012 & .1061 & .1177 \\
50 & .0312 & .0352 & .0378 & .0489 & .0645 & .0702 & .0804 & .0842 & .0926 \\
100 & .0228 & .0256 & .0274 & .0355 & .0471 & .0510 & .0586 & .0619 & .0687 \\
200 & .0165 & .0185 & .0197 & .0255 & .0341 & .0370 & .0429 & .0449 & .0496 \\
\hline
\end{tabular}
\end{table}

(3) Repeated computations.
(4) Interpolate on \(\sqrt{n} \text{DIP} \).
DIP TEST OF UNIMODALITY

the dip; it identifies three intervals of equal length such that the middle interval has low empirical probability relative to both the outside intervals. It has similar asymptotic properties to the dip, but is $O(n^2)$ in computation.

(iii) likelihood ratio:

$$\sup_{U_{1C}} \sum_{i=1}^{n} \log f(x_i)/\sup_{U_{2C}} \sum_{i=1}^{n} \log f(x_i)$$

where U_{1C} is the class of unimodal densities, and U_{2C} is the class of bimodal densities, constrained to have maximum density less than C.

The constraint on the density is necessary because $\sum \log f(x_i)$ has maximum value ∞ over all unimodal densities. Wegman (1970) considers instead constraining the density to be constant in an interval about the mode—the two constraints are equivalent with appropriate choice of C and interval length.

The constrained unimodal density estimate has value C in some interval $[x_L, x_U]$, and is proportional to the density of the g.c.m. in $(-\infty, X_L)$ and to the density of the l.c.m. in (x_U, ∞). It is thus quite similar in form to the DIP estimate. There are two important differences.

(i) The measure of distance for the likelihood ratio test is $\int \log f \cdot dF_n$ and for the dip is $\sup |F - F_n|$, so that the dip is relatively insensitive to large changes in f that cause small changes in F.

(ii) The dip automatically determines $[x_L, x_U]$, the modal interval, but the likelihood ratio statistic requires some specification of C. We have used $C = \frac{1}{\log g_{\sqrt{n}}}$ where $g_{\sqrt{n}}$ is the \sqrt{n} smallest interval between the order statistics; this may well result in too large a C (allowing exaggerated contributions near the mode) when there is some discreteness or rounding in the data. The dip is insensitive to such rounding.

It will be seen from Table 2 that the dip appears slightly superior to the depth, and markedly superior to the likelihood ratio. The particular alternative distribution, a mixture of uniforms, is very suitable for the type of density estimation used in the depth, and the depth should be expected to do relatively worse in other applications. The poor performance of the likelihood ratio test is probably due to poor choice of C; but the real defect of this method is the difficulty in choosing C.

We have used as reference distribution the “least-favorable” unimodal distribution, the uniform. There may be evidence in the data that, if the true

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Dip</th>
<th>Depth</th>
<th>Likelihood Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>.795</td>
<td>.749</td>
<td>.540</td>
</tr>
<tr>
<td>100</td>
<td>.973</td>
<td>.961</td>
<td>.905</td>
</tr>
</tbody>
</table>
distribution is unimodal, it is far from uniform. Following Silverman (1981), it would be possible to evaluate the significance of a computed dip, against the null distribution of dips obtained by sampling from the best fitting unimodal distribution as specified in Theorem 6. This procedure should have better power than the present test for discovering two relatively close modes with pronounced tails—the new procedure effectively conditions on the observations not in the tails.

6. An example. From Scully (1982), the quality of faculty in 63 statistics departments was assessed on a range of 30 to 72, distributed in the counts

\[1001011205411322223121252002013441001000102. \]

There seem to be modes about 40 and about 60. The dip illustrated in Figure 1 is .059 which has a tail probability about 10% from Table 1. \((\sqrt{63}D(F_{63})\) is distributed approximately as \(\sqrt{100}D(F_{100})\) which has 90% point .474. Thus \(D(F_{63})\) has 90% point .060.)

7. The multivariate case. Empirical distribution functions do not generalize nicely to more than 1 dimension; but we can linearize the higher dimensional problem in various ways. The most promising linearization is through the minimum spanning tree, which unfortunately requires some measure of distance on the space. The minimum spanning tree is the graph of minimum total length connecting all sample points.

(i) Use the greatest dip over all linear combinations of the original variables.
(ii) Let a particular data point x_0 be a trial value of the mode. All data points have a partial order in which $x < y$ if y lies between x and x_0 on the tree. Define the empirical probability on the tree, relative to x_0, by $F_n(x) = \frac{\text{[# of points } \leq x]}{n}$. A probability distribution F is unimodal with respect to x_0 if F is supported by the minimum spanning tree and has increasing density according to the partial order. The dip for x_0 will be the maximum distance between F_n and the closest unimodal distribution; then select x_0 to minimize the dip for x_0.

(iii) A simpler technique begins again with a trial value of the mode, say x_0; the closest point to x_0, say x_1, is found; then the closest point to either x_0 or x_1, say x_2; the closest point to x_0, x_1 or x_2; and so on. These points are easily determined from the minimum spanning tree and vice-versa.

Let the successive closest distances be $d_1, d_2, \ldots, d_{n-1}$ and define $y_i = \sum_{j=1}^{i} d_j$. Let F_n be the empirical distribution on the y_i and define $D(x_0) = \rho(F_n, F)$ where F is the least concave minorant of F_n. (We expect the d_i to be roughly increasing if x_0 is the unique mode.) The test statistic would be $\inf_{x_0} D(x_0)$.

REFERENCES

Statistics Department
Yale University
New Haven, Connecticut 06520

Cooperative Studies Unit
Veteran's Administration Hospital
West Haven, Connecticut